Notes for Rigidity Seminar Gromov’s Proof of Mostow Rigidity Theorem

نویسنده

  • Subhadip Chowdhury
چکیده

we introduce a homological invariant of a manifold known as Gromov’s norm. Gromov’s norm of hyperbolic manifolds will be seen to be proportional to the volume of the manifold. The first striking consequence of this result is that the volume of a hyperbolic manifold is a topological invariant. Intuitively, Gromov’s norm measures the efficiency with which multiples of a homology class can be represented by simplices. A complicated homology class needs many simplices. Definition 2.1 (Gromov Norm). Consider the homomorphism i∗ : H2(S, ∂S;Z)→ H2(S, ∂S;R)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Scale Detection of Half-flats in Cat(0) Spaces

Let M be a complete locally compact CAT(0)-space, and X an ultralimit of M . For γ ⊂M a k-dimensional flat, let γω be the k-dimensional flat in X obtained as an ultralimit of γ. In this paper, we identify various conditions on γω that are sufficient to ensure that γ bounds a (k + 1)-dimensional half-flat. As applications we obtain (1) constraints on the behavior of quasi-isometries between loca...

متن کامل

Asymptotic Cones, Bi-lipschitz Ultraflats, and the Geometric Rank of Geodesics

Let M be a closed non-positively curved Riemannian (NPCR) manifold, M̃ its universal cover, and X an ultralimit of M̃ . For γ ⊂ M̃ a geodesic, let γω be a geodesic in X obtained as an ultralimit of γ. We show that if γω is contained in a flat in X, then the original geodesic γ supports a non-trivial, normal, parallel Jacobi field. In particular, the rank of a geodesic can be detected from the ultr...

متن کامل

Groups, geometry, and rigidity

This mini-course is an introduction to some central themes in geometric group theory and their modern offshoots. One of the earliest and most influential results in the area (in fact a precursor to the field of geometric group theory) is Mostow’s celebrated strong rigidity theorem. This course begins with an “annotated” proof of Mostow’s theorem, using the framework of the proof as a means to i...

متن کامل

2 00 4 Strong Jordan separation and applications to rigidity

In this paper, we extend the results of [10] to higher dimension. We prove that simple, thick hyperbolic P-manifolds of dimension ≥ 3 exhibit Mostow rigidity. We also prove a quasi-isometry rigidity result for the fundamental groups of simple, thick hyperbolic P-manifolds of dimension ≥ 3. The key tool in the proof of these rigidity results is a strong form of the Jordan separation theorem, for...

متن کامل

1 3 Ju n 20 05 Strong Jordan separation and applications to rigidity .

In this paper, we extend the results of [14] to higher dimension. We prove that simple, thick hyperbolic P-manifolds of dimension ≥ 3 exhibit Mostow rigidity. We also prove a quasi-isometry rigidity result for the fundamental groups of simple, thick hyperbolic P-manifolds of dimension ≥ 3. The key tool in the proof of these rigidity results is a strong form of the Jordan separation theorem, for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013